Math 4650 Topic 4 - Limits of functions

Notation:

We write $f: D \rightarrow \mathbb{R}$ to mean that f is a function with domain D and output in \mathbb{R} . $Ex: f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x) = x^2$ $Ex: f: \mathbb{R} - \{0\} \rightarrow \mathbb{R}$ given by $f(x) = \frac{1}{x}$

Def: Let DSIR. Let a EIR. We say that a is a limit point of D if for every S>O there exists XED with O< |x-a|<8. U<1x-al (1110 \$111) means x = a a ats a-8 Ix-al<S means a-S<X<a+S $E_{X}: D = (0, 1] U \{2\}$ Claim: O is a limit point of D. pf of claim: Let S>0. Let x=min {들, -12]. x= 8/2 IT OI 0-8 0 0+8 2 L Then, $O < |x - 0| < \delta$ and $x \in D$. Thus, O is a limit point of D.

Claim: Z is not a limit of D. proof of claim: Let $S = \frac{1}{2}$. There is no XED with O< |X-2|<2. —(////@////)) 1 2-1/2 2 2+1/2 0 Thus, Z is not a limit point of D. Theorem: Let DER and aER. Then: a is a limit point of D if and only if there exists a sequence (xn) contained in D with xn = a for all n and $\lim x_n = \alpha$. pf: HW Ex: 1 is a limit point of D = (0, T]because if we set $x_n = 1 - \frac{1}{n}$ with $n \ge 2$ then (Xn)n=2 is writined in D, Xn = 1 for all n and $x_n \rightarrow 1$. X2 X3 X4 X5 D $\leftarrow \bigcirc + + + + +$ 12 3 45 1

Def: Let $D \subseteq \mathbb{R}$ and $f: D \rightarrow \mathbb{R}$. Let a be a limit point of D and LER. $\lim_{x \to a} f(x) = L \quad \text{if}$ We write for every 270 there exists S>D so that if XED and O<1X-al<S then $[f(x)-L] < \Sigma$.

Ex: Let's show that $\lim_{x \to 2} x^2 = 4$.

Proof.
Let
$$\xi > 0$$
.
We need to find $\delta > 0$ so that if $0 < |x-2| < \delta$, then $|x^2-4| < \varepsilon$
We need to find $\delta > 0$ so that if $0 < |x-2| < \delta$, then

Note that
$$|x^2 - 4| = |x - 2| |x + 2|$$

We can we need to
 $x + 2 + 1 = |x - 2| |x + 2|$
We can be bound this
 $x + 1 = |x - 2| |x + 2|$
We need to
 $x + 2 + 1 = |x - 2| |x + 2|$
We need to
 $y + 1 = |x - 2| |x + 2|$
 $y + 2 + 1 = |x - 2| |x + 2|$
We need to
 $y + 1 = |x - 2| |x + 2|$
 $y + 2 + 1 = |x - 2| |x + 2|$
 $y + 2 + 1 = |x - 2| |x + 2|$
 $y + 1 = |x - 2| |x + 2|$
 $y + 1 = |x - 2| |x + 2|$
 $y + 2 + 1 = |x - 2| |x + 2|$
 $y + 2 + 1 = |x - 2| |x + 2|$
 $y + 2 + 1 = |x - 2| |x + 2|$
 $y + 2 + 1 = |x - 2| |x + 2|$
 $y + 2 + 1 = |x - 2| |x + 2|$
 $y + 2 + 1 = |x - 2| |x + 2|$
 $y + 2 + 1 = |x - 2| |x + 2|$
 $y + 2 + 1 = |x - 2| |x + 2|$
 $y + 2 + 1 = |x - 2| |x + 2|$
 $y + 2 + 1 = |x - 2| |x + 2|$
 $y + 2 + 1 = |x - 2| |x + 2|$
 $y + 2 + 1 = |x - 2| |x + 2|$
 $y + 2 + 1 = |x - 2| |x + 2|$
 $y + 2 + 1 = |x - 2| |x + 2|$
 $y + 2 + 1 = |x - 2| |x + 2|$
 $y + 2 + 1 = |x - 2| |x + 2|$
 $y + 2 + 1 = |x - 2| |x + 2|$
 $y + 2 + 1 = |x - 2| |x + 2|$
 $y + 2 + 1 = |x - 2| |x + 2|$
 $y + 2 + 1 = |x - 2| |x + 2|$
 $y + 2 + 1 = |x - 2| |x + 2|$
 $y + 2 + 1 = |x - 2| |x + 2|$
 $y + 2 + 1 = |x - 2| |x + 2|$
 $y + 2 + |x - 2| |x + 2|$
 $y + 2 + |x - 2| |x + 2|$
 $y + 2 + |x - 2| |x + 2|$
 $y + 2 + |x - 2| |x + 2|$
 $y + 2 + |x - 2| |x + 2|$
 $y + 2 + |x - 2| |x + 2|$
 $y + 2 + |x - 2| |x + 2|$
 $y + 2 + |x - 2| |x + 2|$
 $y + 2 + |x - 2| |x + 2| |x + 2|$
 $y + 2 + |x - 2| |x + 2| |x + 2|$
 $y + |x - 2| |x + 2| |x + 2| |x + 2|$
 $y + |x - 2| |x + 2| |x + 2| |x + 2|$
 $y + |x - 2| |x + 2| |x$

Suppose
$$S \leq 1$$
.
Then if $0 < |x-2| < S \leq 1$ we will get
 $|x+2| = |x-2+2| = |x-2+4|$
 $\leq |x-2|+|4|$
 $\leq |+4|$
 $= 5$

Thus, if
$$0 < |x-2| < \delta \le 1$$
, then
 $|x^2 - 4| = |x+2||x-2| < 5|x-2|$
Set $\delta = \min \{ \xi \le 1 \}$.
Then, if $0 < |x-2| < \delta$ we will get

$$|x^{2}-4| = |x+2||x-2| < 58 \le 5 \le = \varepsilon.$$

$$|x^{-2}|<1 \le \frac{4}{5}$$

$$|x^{-2}|<1 \le \frac{5}{5}$$
So if $0 < |x-2| < 5$, then $|x^{2}-4| < \varepsilon.$

$$\frac{E_{X:}}{E_{X:}} Let's show \lim_{X \to -3} \frac{1}{x+z} = -1$$

l

Proof: Let
$$\varepsilon > 0$$
.
[We need to find $\delta > 0$ so that if $0 < |x - (-3)| < \delta$,
then $|x+2 - (-1)| < \varepsilon$

Note that

$$\begin{vmatrix} \frac{1}{x+2} - (-1) \end{vmatrix} = \begin{vmatrix} \frac{1+x+2}{x+2} \end{vmatrix} = \begin{vmatrix} \frac{x-(-3)}{x+2} \end{vmatrix} = \begin{vmatrix} x-(-3) \end{vmatrix} \cdot \begin{vmatrix} \frac{1}{x+2} \end{vmatrix}$$
His we make
Suppose $\delta \leq \frac{1}{2}$:
Suppose $\delta \leq \frac{1}{2}$:
 $\delta \leq \frac{1}{2} \leftarrow we picked \frac{1}{2}$
 $\delta \leq \frac{1}{2} \leftarrow \frac{1}{2} \leftarrow \frac{1}{2} \leftarrow \frac{1}{2}$
 $\delta \leq \frac{1}{2} \leftarrow \frac{1}{2} \leftarrow \frac{1}{2} \leftarrow \frac{1}{2} \leftarrow \frac{1}{2}$
 $\delta \leq \frac{1}{2} \leftarrow \frac{1}{2} \leftarrow \frac{1}{2} \leftarrow \frac{1}{2}$
 $\delta \leq \frac{1}{2} \leftarrow \frac{1}{$

Set
$$\delta = \min \{ \frac{1}{2}, \frac{\varepsilon}{2} \}$$
.
Then, if $0 < |x - (-3)| < \delta$ we get
 $\left| \frac{1}{x+2} - (-1) \right| = |x - (-3)| \cdot |\frac{1}{x+2}|$
 $< \delta \cdot 2$
 $< \frac{\varepsilon}{2} \cdot 2$
 $= \varepsilon$
So, if $0 < |x - (-3)| < \delta$, then $\left| \frac{1}{x+2} - (-1) \right| < \varepsilon$

Theorem: Limits of functions are unique.
That is, if
$$f: D \rightarrow \mathbb{R}$$
 and a is a limit
That is, if $f: D \rightarrow \mathbb{R}$ and a is a limit
point of D with $\lim_{x \neq a} f(x) = L_1$ and $\lim_{x \neq a} f(x) = L_2$
then $L_1 = L_2$.

Function-sequence limit theorem:
Let
$$f: D \to \mathbb{R}$$
 and a be a limit point of D.
The following are equivalent:
(1) $\lim_{x \to a} f(x) = L$
(2) $\lim_{n \to \infty} f(x_n) = L$ for every sequence (x_n) contained
 $\lim_{n \to \infty} D$ with $x_n \neq a$ for all n and $x_n \to a$.

 $\frac{Proof:}{(D=D^2)} \text{ Suppose } \lim_{x \neq a} f(x) = L.$ $Let (x_n) \text{ be a sequence contained in } D$ $such that x_n \neq a \text{ for all } n \text{ and } x_n \neq a.$

Let's show that
$$f(x_n) \rightarrow L$$
.
Let $\epsilon > 0$.
Since $\lim_{x \neq a} f(x) = L$, there exists $\leq > 0$
so that if $0 < |x-a| < S$ and $x \in D$
then $|f(x) - L| < \epsilon$.
Since $x_n \rightarrow a$ there exists N where
if $n \ge N$ then $0 < |x_n - a| < S$.
Since $x_n \neq a$ there exists N where
if $n \ge N$ then $0 < |x_n - a| < S$.
Since $x_n \neq a$ there $0 < |x_n - a| < S$.
We have shown that $\lim_{n \neq \infty} f(x_n) = L$
($2 \Rightarrow 0$) Suppose that $\lim_{n \neq \infty} f(x_n) = L$ for every
sequence (x_n) contained in D with $x_n \neq a$
for all n and $x_n \rightarrow a$.
Let's show this implies that $\lim_{x \neq a} f(x) = L$
Suppose to the contrary that $\lim_{x \neq a} f(x) \neq L$.
This implies that there exists a

Corollary: Let
$$D \subseteq \mathbb{R}$$
 and a be a limit
point of D. Let $f: D \ni \mathbb{R}$ and $g: D \ni \mathbb{R}$.
Suppose $\lim_{x \neq a} f(x) = L$ and $\lim_{x \neq b} g(x) = M$.
Then:
 $\bigcirc \lim_{x \neq a} cf(x) = cL$
 $\bigotimes_{x \neq a} [f(x) + g(x)] = L + M$
 $\bigotimes_{x \neq a} [f(x) + g(x)] = LM$
 $\bigotimes_{x \neq a} f(x) = \frac{L}{M}$ if $M \neq 0$ and $g(x) \neq 0$ for
 $\bigotimes_{x \neq a} \frac{f(x)}{g(x)} = \frac{L}{M}$ if $M \neq 0$ and $g(x) \neq 0$ for
all $x \in D$
 $\bigotimes_{x \neq a} \frac{f(x)}{g(x)} = \frac{L}{M}$ if $M \neq 0$ and $g(x) \neq 0$ for
 $\bigotimes_{x \neq a} \frac{f(x)}{g(x)} = \frac{L}{M}$ if $M \neq 0$ and $g(x) \neq 0$ for
 $(\bigcirc) \lim_{x \neq a} \frac{f(x)}{g(x)} = \frac{L}{M}$ if $M \neq 0$ and $g(x) \neq 0$ for
all $x \in D$
 $\frac{P(oof:}{x \neq a} We use the function-sequence limittheosem.Let (x_n) be a sequence in D where $x_n \neq a$
for all n and $x_n \rightarrow a$.
By the function-sequence limit theorem
 $\lim_{n \neq \infty} f(x_n) = L$ and $\lim_{n \neq 0} g(x_n) = M$.
Thus, by the algebra of sequences theorem
we get that$

lim
$$cf(x_n) = c \lim_{n \to \infty} f(x_n) = cL$$

 $\lim_{n \to \infty} [f(x_n) + g(x_n)] = \lim_{n \to \infty} f(x_n) + \lim_{n \to \infty} g(x_n) = L+M$
 $\lim_{n \to \infty} [f(x_n)g(x_n)] = [\lim_{n \to \infty} f(x_n)] [\lim_{n \to \infty} g(x_n)] = LM$
 $\lim_{n \to \infty} [f(x_n)g(x_n)] = [\lim_{n \to \infty} f(x_n)] [\lim_{n \to \infty} g(x_n)] = LM$
Since (x_n) was arbitrary, by the function-sequence
 $\lim_{n \to \infty} t$ theorem, we have proven (D_1, D_1, B) .
For (P) , suppose $M \neq D$ and $g(x) \neq D$ for all $x \in D$.
Since (x_n) is contained in D we have
 $g(x_n) \neq 0$ for all n .
By the algebra of sequences theorem we get
 $\lim_{n \to \infty} \frac{f(x_n)}{g(x_n)} = \lim_{n \to \infty} \frac{f(x_n)}{\lim_{n \to \infty} g(x_n)} = \frac{L}{M}$
By the function-sequence limit theorem this proves (P)